Mechanical properties of copper octet-truss nanolattices
نویسندگان
چکیده
We investigate the mechanical properties of copper (Cu) octet-truss nanolattices through a combination of classical molecular dynamics (MD) simulations and theoretical analysis. The MD simulations show that Cu nanolattices with high relative density are stronger than bulk Cu, while also achieving higher strength at a lower relative density as compared to Cu meso-lattices. We demonstrate that modifying the classical octet-truss lattice model by accounting for nodal volume and bending effects through the free body diagram method is critical to obtaining good agreement between the theoretical model and the MD simulations. In particular, we find that as the relative density increases, nodal volume is the key factor governing the stiffness scaling of the nanolattices, while bending dominates the strength scaling. Most surprisingly, our analytic modeling shows that surface effects have little influence on the stiffness and strength scaling of the nanolattices, even though the cross sectional sizes of the nanowires that act as the lattice struts are on the order of 6 nm or smaller. This is because, unlike for individual nanowires, the mechanical response of the nanowire struts that form the nanolattice structure is also a function of bending and nodal volume effects, all of which depend nonlinearly on the nanolattice relative density. Overall, these results imply that nanoscale architected materials can access a new regime of architected material performance by simultaneously achieving ultrahigh strength and low density. © 2017 Elsevier Ltd. All rights reserved.
منابع مشابه
Mechanical Response of Hollow Metallic Nanolattices: Combining Structural and Material Size Effects
Ordered cellular solids have higher compressive yield strength and stiffness compared to stochastic foams. The mechanical properties of cellular solids depend on their relative density and follow structural scaling laws. These scaling laws assume the mechanical properties of the constituent materials, like modulus and yield strength, to be constant and dictate that equivalent-density cellular s...
متن کاملNanolattices: An Emerging Class of Mechanical Metamaterials.
In 1903, Alexander Graham Bell developed a design principle to generate lightweight, mechanically robust lattice structures based on triangular cells; this has since found broad application in lightweight design. Over one hundred years later, the same principle is being used in the fabrication of nanolattice materials, namely lattice structures composed of nanoscale constituents. Taking advanta...
متن کاملStiff, strong zero thermal expansion lattices via the Poisson effect
Designing structures that have minimal or zero coefficients of thermal expansion (CTE) are useful in many engineering applications. Zero thermal expansion is achievable with the design of porous materials. The behavior is primarily stretch-dominated, resulting in favorable stiffness. Two and three-dimensional lattices are designed using ribs consisting of straight tubes containing two nested sh...
متن کاملEqual Channel Angular Pressing to Produce Ultrafine Pure Copper with Excellent Electrical and Mechanical Properties
In this article, commercially pure copper samples were severely deformed by equal channel angular pressing (ECAP) up to eight passes at room temperature. The effects of severe plastic deformation on the microstructure, mechanical properties, and electrical conductivity of the copper were investigated. The microstructure evolution was followed by optical microscope and field emission scanning el...
متن کاملEffect of HPT and CGP Processes on the Copper Me-chanical Properties
One of the most common methods for production of ultra fine grained materials is severe plastic deformation (SPD). In this study, constrained groove pressing (CGP) and high pressure torsion (HPT) processes as effective methods of severe plastic deformation for the strain imposed on the pure copper were used. This paper presents the results of an experimental research, to review the influence of...
متن کامل